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TECHNICAL MEMORANDUM

THE CRYOGENIC TENSILE PROPERTIES OF AN EXTRUDED
ALUMINUM-BERYLLIUM ALLOY

1. INTRODUCTION

Aluminum (Al)-beryllium (Be) materials have been around for some time, beginning with the
material developed in the 1960s by Lockheed called “Lockalloy.”! Interest in their use waned in the
1970s and the materials became unavailable. In the past decade, due to the desirable performance char-
acteristics of this family of composite materials for acrospace applications, new alloys have been devel-
oped with improved mechanical properties, along with improved processing techniques and process
controls for their production. Al-Be materials are available in the form of extrusions, rolled plate,
forgings, and most recently, near-net-shaped investment castings.

Desirable characteristics of Al-Be materials include lightweight, dimensional stability, stiffness,
good vibration-damping characteristics, low coefficient of thermal expansion, and workability.! These
materials are 3.5 times stiffer and 22-percent lighter than conventional Al alloys. Their use is attractive
for weight-critical structural applications such as advanced electro-optical systems; advanced sensor and
guidance components for flight and satellite systems; components for lightweight, high-performance
aircraft engines; and structural components for helicopters. As these materials become more highly used
in aerospace programs, mechanical properties at liquid hydrogen temperatures will be needed for struc-
tural analyses. These properties are currently not available for these families of alloys.

AlBeMet162 is an Al-Be extruded alloy that was developed by the Brush Wellman Company.!
It is currently being used on the telescope for the Next-Generation Space Telescope program for its
desirable properties. The cryogenic tensile properties for this alloy were evaluated for Goddard Space
Flight Center.



2. EXPERIMENTAL PROCEDURE

Tensile specimens were obtained from the Brush Wellman Company and fabricated per figure 1
from extruded AlBeMet162 material per SAE-AMS7912, “Aluminum-Beryllium Alloy, Extrusions.”=
The extrusion used to extract the specimens was approximately 2 by & by 35 in. Test specimens were
extracted from the extrusion in the longitudinal (1.), long-transverse (1.-1), and 45° (45) orientations, and
from the T/6, 1/2, and 5T/6 locations (1 = material thickness) along the length of the extrusion as shown
in figure 2.
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- 1.000 = , |
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1000 0] o’
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Y '
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faper in width from the ends to the center (0.005 in max)

. Holes must be on centerline of reduced section within £0.002 in

. Break all edges 0.005 in max
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. These are final part size dimensions in inches.
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Figure 1. Tensile specimen.
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Twelve specimens were extracted from the T/6 location along the length of the extrusion—five
with the 1. orientation, five with the I-T orientation, and two with the 45° orientation. Twelve specimens
were extracted from the T/2 location along the length of the extrusion—{ive with the L orientation, five
with the 1T orientation, and two with the 45° orientation. Eleven specimens were extracted from the
5T/6 location of the extrusion—five with the L orientation, five with the L-T orientation, and one with
the 45° orientation (fig. 2). The different orientations were tested to determine whether a significant
difference in the mechanical properties was discernable at cryogenic temperatures.

(=423 °F). Room-temperature testing was performed to verify mechanical properties” conformance of
the material to those specitied in AMS7912. Cryogenic testing was performed to characterize the mate-
rial properties; i.e., ultimate tensile strength, yield strength, percent elongation, and modulus, at the
subject temperatures.



3. RESULTS

ultimate tensile and yield strengths and percent elongation for each temperature and specimen orienta-
tion are shown in table 3. Analysis of variance (ANOVA) results are shown in table 4. ANOVA was

conducted for comparison of differences between the longitudinal and transverse specimens at —195.5 °C

(=320 °F) and —252.8 °C (—423 °F}, and for comparison of differences between properties of the same
specimen orientation at different temperatures,

Table 1. AlBeMet162 tensile data at room temperature, —195.5 and —252.8 °C.

8.2% Ultimate
Yield Tensile Elastic 1-in Plastic Total

Other Test Temp. Strength | Strength Modulus | Elongation | Elongation | Elongation

iD No. | Orientation| Type {°C) {MPa) (MPa) {GPa) {%) (%) (%)
T6L1 L Tensile 21 3318 4513 175.8 8.1 8.2
T2L5 I Tensile 21 3165 432.0 1724 - 7.4 7.6
5T6L3 L Tensile 21 317.8 426.8 180.0 - 6.3 6.5
5T6T4 T Tensile 21 3175 3772 155.8 2.3 2.5
T6T5 T Tensile 21 3182 389.9 171.7 - 2.4 2.6
T2T73 T Tensile 21 3123 3723 165.5 - 24 2.6
T6-45-1 45 Tensile -195.5 310.3 456.4 237.9 2.7 2.5 2.7
T2-45-1 45 Tensile -195.5 3275 4923 175.1 3.8 3.9 4.2
TeL2 L Tensile -195.5 362.7 530.2 176.5 34 3.3 3.6
T6L5 L Tensile -195.5 366.1 533.7 180.0 3.4 3.3 3.6
T2L3 L Tensile -195.5 3475 515.0 216.5 31 31 3.3
57611 L Tensile -195.5 355.1 4757 186.8 2.9 1.9 2.2
5T6L4 L Tensile -195.5 384.0 4275 188.2 0.6 0.8 1
1274 T Tensile -195.5 342.0 452.3 161.3 17 15 1.8
57672 T Tensile -195.5 3475 439.9 1834 15 14 1.6
5T6T5 T Tensile -195.5 3475 464.0 1717 17 17 1.9
T6T3 T Tensile -195.5 346.8 475.7 189.6 2.0 1.8 2
T2T1 T Tensile —195.5 3337 4171 169.6 14 0.9 1.1
T2-45-2 45 Tensile -262.8 439.2 536.4 176.5 1.5 1.06 1.36
T6-45-2 45 Tensile -252.8 460.6 572.3 157.9 0.7 1.26 1.63
5T6-45-1 45 Tensile -252.8 3923 521.2 201.3 1.2 1.58 1.83
T6L3 L Tensile -252.8 474.4 537.1 175.1 - 0.62 0.92
T2L1 L Tensile -252.8 4433 517.8 168.2 0.5 0.73 1.03
T214 L Tensile -252.8 450.2 578.5 2213 1.3 1.44 17
57612 L Tensile -252.8 440.6 528.8 200.6 0.8 0.88 115
5T6L5 L Tensile -252.8 477 4 554.3 159.3 1.1 0.92 1.26
T6L4 L Tensile -252.8 4047 577.8 157.2 2.6 2.95 315
T212 L Tensile -252.8 462.6 553.6 184.1 1.1 1.05 1.3
T6T4 T Tensile -252.8 4726.8 501.2 176.5 0.8 0.69 0.96
T275 T Tensile -252.8 4337 512.3 158.6 0.64 0.96
57673 T Tensile -252.8 433.0 521.9 199.3 0.8 0.75 1
T6T1 T Tensile -252.8 434.4 539.9 188.2 1.3 0.89 117
1212 T Tensile -252.8 422.0 523.3 204.8 1.3 .95 1.21
5T6TH T Tensile -252.8 4213 496.4 159.3 0.7 0.88 1.08
TeT2 T Tensile -252.8 405.4 499.9 195.8 0.8 0.75 0.995




Table 2. AlBeMet162 tensile data at room temperature, —320 and —423 °F.

0.2% Ultimate
Yield Tensile Elastic 1-in Plastic Total

Other Test Temp. Strength | Strength | Modulus | Elongation | Elongation | Elongation

1D NO. | Orientation Type (°F) {ksi) {ksi) {Msi) (%) (%) {%o)
Tol 1 L Tensile 70 481 65.5 255 - 8.1 8.2
1215 L Tensile 70 45.9 62.7 25.0 7.4 7.6
5T6L3 L Tensile 70 461 61.9 26.1 - 6.3 6.5
51674 T Tensile 70 46.1 547 22.6 - 2.3 2.5
1675 T Tensile 70 46.2 56.6 24.9 24 2.6
T273 T Tensile 70 45.3 54.0 24.0 - 2.4 2.6
T6-45-1 45 Tensile -320 45.0 66.2 34.5 2.7 2.5 2.7
T2-45-1 45 Tensile -320 47.5 71.4 254 3.8 3.9 4.2
T6l2 L Tensile -320 52.6 76.9 25.6 34 33 3.6
T6l5 L Tensile -320 53.1 774 26.1 3.4 3.3 3.6
T213 L Tensile -320 50.4 747 314 34 34 33
571611 L Tensile -320 515 69.0 274 2.9 1.9 2.2
57614 L Tensile -320 55.7 62.0 27.3 0.6 0.8 1
T274 T Tensile -320 49.6 65.6 234 1.7 1.5 1.8
51672 T Tensile -320 50.4 63.8 26.6 1.5 1.4 1.6
51675 T Tensile -320 50.4 67.3 24.9 1.7 1.7 1.9
T6T3 T Tensile -320 50.3 69.0 27.5 2.0 1.8 2
T2T1 T Tensile -320 484 60.5 24.6 1.4 0.9 11
T2-45-2 45 Tensile -423 63.7 77.8 25.6 15 1.06 1.36
T6-45-2 45 Tensile 423 66.8 83.0 22.9 07 1.26 1.63
5T6-45-1 45 Tensile 423 56.9 75.6 29.2 1.2 1.58 1.83
T6L3 L Tensile -423 68.8 77.9 254 0.62 0.92
T2L1 L Tensile 423 64.3 75.1 244 0.5 0.73 1.03
1214 L Tensile 423 65.3 83.9 321 1.3 1.44 1.7
5T6L2 L Tensile -423 63.9 76.7 29.1 0.8 0.88 115
5T6L5 L Tensile 423 69.2 80.4 23.1 1.1 0.92 1.26
T6l4 L Tensile 423 58.7 83.8 22.8 2.6 2.95 315
T212 L Tensile -423 67.1 80.3 26.7 11 1.05 1.3
T6T4 T Tensile 423 61.9 72.7 25.6 0.8 0.69 0.96
1275 T Tensile 423 62.9 74.3 23.0 - 0.64 0.96
51673 T Tensile -423 62.8 75.7 28.9 0.8 0.75 1
ToTt T Tensile 423 63.0 78.3 27.3 1.3 0.89 117
12712 T Tensile 423 61.2 75.9 29.7 1.3 0.95 1.21
5T6T1 T Tensile -423 61.1 72.0 23.1 07 0.88 1.08
T6T2 T Tensile 423 58.8 72.5 28.4 0.8 0.75 0.995
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Figure 3. AlBeMet162 with (a) ultimate tensile strength (MPa) versus temperature (°C)

and (b} ultimate tensile strength (ksi) versus temperature (°F).
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Table 3. Mechanical property mean data summary.

Ultimate Tensile
Temperature Ne. Strength Yield Strength | Elongation
°C {°F} | Orientation | Specimens | MPa  (ksi) MPa  (ksi) (%)
-252.8 (-423) L 7 549.5 (79.7) | 450.2 (65.3) 1.50
-252.8 (-423) T 7 513.7  (74.5) | 4254  (61.7) 1.05
-195.5 (-320) L 5 4964 (72.0) | 3634 (52.7) 2.70
-195.5 (-320) T 5 4495 (65.2) | 3434 (49.8) 1.70
2 (70 L 3 4371 (634) | 322.0 (46.7) 6.40
2 (70) T 3 379.9  (55.1) | 316.5  (45.9) 2.60
Table 4. ANOVA results.
Temperature
Treatment °G {°F) o Results
UTS-L/UTS-T | -252.8/-252.8 (-423/-423) | 0.05 | The means are statistically different
YS-LAYS-T ~252.8/-252.8 (-423/-423) | 0.05 | The means are statistically different
Y%e-L/%e-T | -252.8/-252.8 (-423/-423) | 0.05 | Cannot distinguish a difference in means at this o level
UTS-LUTS-T | ~195.5/-195.5  (-320/-320) | 0.05 | Cannot distinguish a difference in means at this « level
YS-L/YS-T -196.5/-195.5 (-320/-320) | 0.05 | The means are statistically different
Yee—/%e—T | -1955/-195.5 (=320/-320) | 0.05 | Cannot distinguish a difference in means at this o level
UTS-L/AUTS-T 21/21 (70/70) 0.05 | The means are statistically different
YS-L/YS-T 21/21 (70/70) 0.05 | Cannot distinguish a difference in means at this o, level
Yoo /%e-T 2121 (70/70) 0.05 | The means are statistically different
UTS-L/UTS-L | -252.8/-185.5 (-423/-320) | 0.05 | The means are statistically different
UTS-LUTS-T | -252.8/-195.5  (-423/-320} | 0.05 | The means are statistically different
Yo-L/YS-L -252.8/-195.5 (-423/-320) | 0.05 | The means are statistically different
YS-L/YS-T —252.8/-195.5 (-423/-320) | 0.05 | The means are statistically different
Yee-L/%e-L | -252.8/~195.5 (-423/-320) | 0.05 | The means are statistically different
Y%e-/%e-T | -252.8/-1955 (-423/-320) | 0.05 | The means are statistically different
UTS—L/UTS-L —195.5/21 (=320/70y | 0.05 | Cannot distinguish a difference in means at this o level
UTS-L/UTS-T -195.5/21 (-320/70) | 0.05 | The means are statistically different
YS-LAYS-L -195.5/21 (-320/70) | 0.05 | The means are statistically different
YS-L/YS-T —195.5/21 (=320/70y | 0.05 | The means are statistically different
Yoo—/%e—-L -195.5/21 (-320/70) | 0.05 | The means are statistically different
Yoo-L/%E-T -195.5/21 (-320/70) | 0.05 | The means are statistically different

LEGEND:

UTS = Ultimate tensile strength
YS = Yield strength

%e = Percent elongation

L = Longitudinal specimen
T = Transverse specimen




Mechanical properties at room temperature met the requirements of specification AMS7912 for
the ultimate tensile and yield strengths for both longitudinal and transverse specimens. The elongation
met the specification requirement for the transverse specimens, but was below the requirement for two
of the three longitudinal specimens. ANOVA performed on the room-temperature data showed that the
ultimate tensile strength and percent elongation between the longitudinal and transverse specimen
orientations are distinguishable, whereas the yield strength between these two orientations was not
distinguishable statistically. This was consistent with the properties listed in the specification for these
{wo orientations.

The ultimate tensile and yield strength at —195.5 °C (=320 °F) were increased over the room-
temperature mechanical propertics. ANOVA performed on the —195.5 °C (=320 °F) data showed the
ultimate tensile strength and percent elongation were not distinguishably different between the longitudi-
nal and transverse orientations, but the vield strengths were distinguishable statistically. ANOVA showed
the —=195.5 °C (=320 °F) properties were distinguishably different from the room-temperature properties

between —195.5 °C (320 °F) and 21 °C (70 °F) was large, and one would expect a statistical difference
in means. The reason the means were not distinguishable was because of the extremely large variance
in the —195.5 °C (=320 °F) data.

The ultimate tensile and yield strengths at -252.8 °C (- 423 °F) were increased over the
—195.5 °C (320 °F) and room-temperature mechanical properties. ANOVA performed on the =252.8 °C
(—423 °F) data showed the ultimate tensile and vield strengths were distinguishably ditferent between the
longitudinal and transverse orientations, but the percent elongation was not distinguishable statistically.
ANOVA showed the —252.8 °C (423 °F) properties were distinguishably different from the —195.5 °C
(320 °F) properties in all cases.

Design values for the ultimate tensile and yield strengths versus temperature were generated
from the mechanical property data and are shown in figure 6. The design properties are presented as
ratios of the minimum cryogenic temperature ultimate tensile and yield strength values obtained during
testing divided by the AMS7912 transverse room-temperature property. Figure 6 data represent lower
bound properties for both the longitudinal and transverse directions. They do not represent A- or B-basis
properties. To obtain cryogenic properties, multiply the AMS7912 room-temperature ultimate tensile or
yield strength value by the percentage shown in figure 6.

Design values for percent elongation are shown in figure 7. These values are based on the
AMS7T912 value for room temperature, and on the minimum values obtained during testing at —~195.5 °C
(320 °F) and —252.8 °C (—423 °F)}. Note the poor ductility at —195.5 °C (=320 °F) and -252.8 °C
(=423 °F).

Modulus values shown in tables 1 and 2 are typical values based on tensile test results.
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Figure 6. AlBeMetl162 design properties for ultimate tensile strength and yield strength
versus (a) temperature (°C) and (b) temperature (°F).
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4. CONCLUSIONS

The ultimate tensile and yield strengths for extruded AlBeMet162 material increase with
decreasing temperature. The percent elongation for extruded AlBeMet162 material decreases with
decreasing temperature.

At cryogenic temperatures, the ultimate tensile and yield strengths are higher in the longitudinal
direction than the long-transverse direction. This is consistent with the room-temperature mechanical
property data of AMS7912. At cryogenic temperatures, it is not possible to distinguish a difference in
percent elongation between the longitudinal and long-transverse directions, whereas there is a difference
in percent elongation at room temperature per AMS7912.

The ultimate tensile and yield strengths at —252.8 °C (—423 °F) are higher than these properties
at —195.5 °C (320 °F). The ultimate tensile and yield strengths at —195.5 °C (=320 °F) are higher than
these properties at 21 °C (70 °F). The elongations at —252.8 °C (—423 °F) and —195.5 °C (-320 °F) are
lower than the elongation at room temperature.
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